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Nonlinear creep behavior of viscoelastic
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A study of the tension behavior of polycarbonate (PC) under room temperature and various
sustained loads is presented. Time-dependent axial elongations and transverse contractions of
the specimen were simultaneously measured at nine different stress levels, from 15.89 to
59.4 MPa, and modeled according to a time-stress superposition principle. The test duration
was only one hour. It was shown that creep compliance vs. log time curves at different stresses
can be horizontally shifted to form a smooth master curve for one year at a reference stress of
30.97 MPa. Moreover, the stress shift factors for axial extension creep curves and transverse
contraction creep curves are found to be identical for the stress levels considered, and this is
verified using the Poisson’s ratio measurements.
C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Since polymeric materials and polymer-matrix compos-
ites are being used as load-carrying components in many
structural applications, there is a very good case for ade-
quate constitutive equations being developed to character-
ize their mechanical behaviour, especially their long-term
performance. In some cases, it may be enough to use elas-
tic relations but, in general, their behavior is viscoelastic
and often nonlinear. Linear viscoelastic behavior is usu-
ally described using the well-known Boltzmann single
integral representation or the differential form with a me-
chanical analogy in terms of springs and dashpots. As
for nonlinear viscoelastic behavior, which is present at
intermediate and high stresses, multiple and single inte-
gral representations are widely used. Multiple hereditary
integral representations are essentially extensions of the
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Boltzmann single integral representation using higher or-
der stress or strain terms to account for nonlinear behavior
[1]. The major drawback of this approach is the large num-
ber of kernel functions that need to be experimentally de-
termined, and with limited success. For the sake of appli-
cation simplicity, the nonlinear single integral representa-
tions are easily accepted for use in modeling the nonlinear
viscoelastic behavior of polymers, among them, the mod-
ified Boltzmann superposition model [2] and the reduced
time models [2–8]. This paper will discuss the nonlin-
ear creep behavior of polycarbonate, and so we will next
be giving a brief review of these two types of nonlinear
representations.

The modified Boltzmann superposition model is in the
form of linear viscoelasticity convolution integrals, with
the nonlinearities appearing only in stress measurements
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[2]:

ε(t) =
∫ t

0−
J (t − τ )

d f [σ (τ )]

dτ
dτ (1)

where f is a nonlinear function of stress, σ . Let εc(t, σ0)
denote the strain response in a creep test defined by the
loading σ (τ ) = σ0 H (τ ), where H (τ ) is the Heaviside
step function, and then we have

εc(t, σ0) = J (t) · f (σ0). (2)

It is shown that the creep response has a separable form.
If the creep curves are plotted in a log strain vs. log time
graph, then different curves at different stress levels can be
superposed by a purely vertical shifting. The shift factor
is, of course, stress-dependent.

There are several reduced time models for description
of the nonlinear viscoelasticity of polymeric materials
[2–8]. The first simple reduced time representation for
modeling nonlinear viscoelasticity was first proposed by
Schapery based on the concept of time-stress equivalence
[3], even though the phenomenon was in fact experimen-
tally recognized by O’Shaughnessy [9] early in 1948. This
nonlinear single integral representation is in the following
form:

ε(t) =
∫ t

0−
J (ψ − ψ ′)

dσ (τ )

dτ
dτ (3)

where ψ = ∫ t
0−

dt ′
aσ

and ψ ′ = ψ(τ ) = ∫ τ

0−
dt ′
aσ

are stress-
reduced times, and aσ is a stress-dependent shift factor,
which is usually known as the stress-reduced factor. The
creep strain by the load history σ (τ ) = σ0 H (τ ) reads:

εc(t, σ0) = J

(
t

aσ

)
· σ0 (4)

Thus, if the creep compliance readings are plotted in dou-
ble logarithmic scale, the curves at different stresses can
be horizontally shifted to form a master curve.

Soon afterwards, Schapery [4] proposed another
nonlinear single integral representation for isothermal
conditions by using irreversible thermodynamics; a
representation combining the features of both previous
representations:

ε(t) = g0 J0σ (t) + g1

∫ t

0−
�J (ψ −ψ ′)

dg2σ (τ )

dτ
dτ (5)

where g0, g1 and g2 are stress-dependent, g0 reflects the
nonlinearity of the instantaneous response, g1 serves as
a multiplier of the heredity integral, and the parameter
g2 accounts for the effect of the load rate on the creep
response. J0 is the instantaneous uniaxial elastic compli-
ance and �J is the uniaxial transient compliance. For a
constant temperature creep test at constant stress σ0, we

obtain the creep compliance function as follows

J (t) ≡ εc(t, σ0)

σ0
= g0 J0 + g1g2�J

(
t

aσ

)
(6)

From the above, the measured transient compliance may
be superimposed by a combination of horizontal and ver-
tical shifting on the log-log representation. The magnitude
of the vertical shift will be log(g1g2), and the magnitude
of horizontal shift will be log(aσ ). Thus the Schapery
model is one of the reduced time models, the time-scale
is stretched or shrunk by a stress-dependent factor of aσ .

Besides the Schapery model, another generally ac-
cepted physical model for the nonlinear behavior of glassy
polymers at small strains is the Knauss and Emri approach
[5, 6], which is based on the free volume concept and
also can be considered as a reduced time model. The un-
derlying assumption with this is that free volume plays
a fundamental role in the viscoelastic response of poly-
mers, and a change in the free volume directly influences
the mobility of the material and changes the inherent time
scale. The larger the free volume, the greater the mobil-
ity of the molecular response to external loading. It has
been shown that temperature, solvent concentration [10],
physical aging [11] and mechanical pressure [12] influ-
ence the free volume, thus changing the time scale of the
materials. So the free volume approach is essentially one
of the reduced time models. In recent decades, the accel-
erated assessment of long-term performance, especially
of the long-term creep response, of materials has received
much research attention. Different accelerated characteri-
zation procedures have been developed to predict the long-
term creep behavior of viscoelastic materials and compos-
ites. The Time-Temperature-Stress-Superposition Princi-
ple (TTSSP) is one such procedure. It is based on the fact
that higher temperatures and higher stress levels cause an
acceleration of creep deformation. Therefore, long-term
creep deformation can be predicted based on short-term
creep data at higher temperatures and stress levels, by a
time-shifting method. The TTSSP can be derived from the
free volume theory [13, 14] and has been used to predict
the long-term performance of low-density polyethylene
[15], high-density polyethylene [13, 16], polypropylene
[14], and many other composite materials [17, 18]. Under
isothermal conditions, the TTSSP reduces to the Time-
Stress Superposition Principle (TSSP).

Plenty of papers, using different models, have been
reported to fit the nonlinear viscoelastic behavior of poly-
meric materials in current literature; and what we are
intent on in this paper is not to contribute more at this as-
pect. The objective of this paper is the application of TSSP
to the nonlinear creep analysis of polycarbonate (PC), in-
cluding the axial extension and transverse contraction as
well. As a result, smooth master compliance curves span-
ning much longer time periods, for axial extensions and
transverse contractions will be created.
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2. Experimental procedure
The material used for tests in this study is the Tuffak R©
polycarbonate (PC). Dog-bone-shaped specimens with a
cross-section of 12.15 × 2.15 mm are cut from a very
regular transparent PC sheet with polished surfaces. All
the tests were completed under isothermal axial tensile
creep conditions.

Most classical methods used in strain measurement are
inappropriate for polymers because they require the prepa-
ration of the surface. It is important to make sure that the
method used does not actually influence measurement re-
sults, and so measurements must be carried out with non-
contact and non-disturbing evaluations. Furthermore, the
method must perform a two-dimension analysis. For that
reason, in this study we adopted a dot-tracking technique
[19, 20], according to which the gauge section of the spec-
imen is directly marked with four tiny ink dots, which are
used to detect surface strains during loading. The strain
tensor measurement was carried out by calculating the ge-
ometrical state (density and orientation) of four dots with
respect to the reference state (undistorted state) according
to the process of large strain kinetics.

Fig. 1 shows the diagram of the test device system,
including a biaxial testing machine developed by LMS
(University of Poitiers), a data acquisition unit and an
imaging processing device [19, 21]. The maximal load-
ing is limited to 5000 N, and we impose a requirement
that the center of the specimen stay in the same posi-
tion during the test; this is in fact imposed by the strain
measurement method. This requires a central symmetry
in the geometry of the testing machine. Furthermore, we
also chose to separate the center for each direction in or-
der to apply independent loading. Practically, we chose
four stepper motors controlled by a microcomputer. Each
of them introduces a maximal displacement of 50 mm
on each axis; some mechanical and photoelectric sensors
were introduced to give the two extreme positions and the
middle position. The command allows the control of dis-
placement and effort in order to allow any type of loading
to be applied [19]. One of the loading programs consists
in applying an imposed uniaxial tension. The geomet-

Figure 1 Schematic of the test device system.

rical transformations of the dots during loading exactly
reflect the specimen’s surface strains. Thus, determin-
ing the strain field means following the dots’ geometrical
transformation (displacement). Then, through the process
giving the Cartesian coordinates of dots coupled with the
procedure of strains kinetics, we can determine the ampli-
tude of the principal strains by comparing the undeformed
and the deformed states. The dots are recorded in quasi-
real time by a CCD video camera (512 × 512 pixels), and
digitally analyzed to calculate the axial strain and lateral
strain, using a personal-computer-based image process-
ing system after each deformation increment. The precise
position of the center of each dot is found by using a cen-
troid algorithm, which is well documented in the work of
one of the authors [22].

Uniaxial tensile creep tests were performed by single-
step loading PC strips and simultaneously recording the
resulting axial strain and lateral strain as a function of
time. For each test, the creep compliance was deter-
mined as the ratio of the time-dependent strain to the
constant applied stress. In order to check the linearity of
the creep behavior of the tested material, the tests were
conducted at nine different stress levels, from 15.89 to
59.4 MPa. If the creep strain is directly proportional to
the applied stress at any given time, that is, the creep
compliance is independent of the imposed stress, the ma-
terial is linear for the stress and strain levels encountered.
This is generally true for small stresses, but in the case
of higher stress levels, doubling the stress more than dou-
bles the amount of creep, resulting in different compli-
ances at different stress levels, and so the behavior is
nonlinear.

3. Time-temperature-stress superposition
principle

According to the free volume theory, the viscosity of the
material, η, can be related to the free volume fraction, f ,
via the Doolittle equation in the form [23]:

η = A exp

[
B

(
1

f
− 1

)]
(7)

where A and B are material constants.
Luo et al. assumed that the stress-induced change in the

free volume fraction is linearly dependent on the stress
change, much like the effect of temperature on the change
in free volume, and that the free volume fraction can be
expressed as [13, 14]:

f = f0 + αT (T − T0) + ασ (σ − σ0) (8)

where αT is the thermal expansion coefficient of the free
volume fraction, ασ refers to the stress-induced expansion
coefficient of the free volume fraction, and f0 is the free
volume fraction at the reference state.
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Suppose there exists a combined temperature-stress
shift factor φT σ , which satisfies

η (T, σ ) = η (T0, σ0) aT σ (9)

then from Equations 8 and 9 we have [13, 14]

log aT σ = −C1

[
C3 (T − T0) + C2(σ − σ0)

C2C3 + C3 (T − T0) + C2(σ + σ0)

]

(10)

where C1 = B/(2.303 f0), C2 = f0/αT , C3 = f0/ασ .
It can easily be shown that Equation 10 reduces to
the well-known WLF equation if there is no stress
difference.

Moreover, we define the stress shift factor at a con-
stant temperature aT

σ and the temperature shift factor at a
constant stress level aσ

T as follows:

η (T, σ ) = η(T, σ0)aT
σ = η(T0, σ0)aσ0

T aT
σ

= η(T0, σ )aσ
T = η(T0, σ0)aT0

σ aσ
T (11)

then we have

φT σ = aσ0
T aT

σ = aT0
σ aσ

T (12)

It is shown from Equation 12 that the time-dependent me-
chanical properties of viscoelastic materials at different
temperatures and stress levels for some convenient time
scales can be shifted along the time scale to construct a
master curve of a wider time scale at a reference temper-
ature T0 and reference stress level σ0 in one step, via the
temperature-stress shift factor aT σ or in two steps via the
combination of the stress shift factor at a constant tem-
perature aT

σ and the temperature shift factor at a constant
stress level aσ

T .
Under isothermal conditions, the TTSSP reduces to

TSSP. In such cases, Equation 10 reduces to

log aσ = − B

2.303 f0

(
σ − σ0

f0/ασ + σ − σ0

)

= − C1(σ − σ0)

C3 + (σ − σ0)
(13)

where aσ denotes the stress shift factor. With this shift
factor, the nonlinear creep behavior can be described via
the stress-induced reduced time, t/aσ :

J (σ, t) = J (σ0, t/aσ ) (14)

4. Results and discussions
Fig. 2 shows the axial stain and lateral contraction strain
curves of PC at nine different stress levels. During creep
at a constant force, the strain magnitude increases with

Figure 2 Creep strain of polycarbonate at room temperature and indicated
stress levels.

Figure 3 Axial extension creep compliance vs. time curves for indicated
stress levels.

time. Moreover, the higher the applied stress, the higher
the strain rate at any given time. When we define the creep
compliance J(t) as the ratio of measured time-dependent
strain, ε(t), to the applied constant stress, σ 0, we get the
axial extension creep compliance curves and transverse
contraction creep compliance curves, as shown in Figs 3
and 4 respectively. It can be seen from these that the com-
pliance curves for the stresses of 15.89 and 25.78 MPa
nearly coincide with each other. This implies that below
approximately 26 MPa, the measured strain is usually
proportional to the applied constant stress, and the creep
behavior at stresses below 26 MPa can be characterized
by a single J(t) curve, which indicates the creep behav-
ior is linear. However, at stresses higher than 26 MPa,
the corresponding J(t) increases with the applied stress,
which marks the onset of nonlinear creep behavior. This
nonlinear effect results from the change of time scale: at
higher stress levels, the material will creep faster.

According to the prescribed TSSP, if the creep compli-
ance curves are plotted on graphs on which the abscissa is
defined as log-time, then the individual compliance curves
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Figure 4 Transverse contraction creep compliance vs. time curves for
indicated stress levels.

Figure 5 Master curve of the data in Fig. 3, for a reference stress of
30.97 MPa.

at different stress levels can be superposed by a horizontal
shift. To obtain the master compliance curve, the reference
condition chosen for this study was 30.97 MPa and the test
temperature. A MathCAD procedure was programmed to
calculate the horizontal shift factors with the least de-
viation between the reference compliance curve and the
shifted one. The master compliance curves constructed
are shown in Figs 5 and 6. The corresponding horizon-
tal stress shift factors, log aσ , are shown in Fig. 7 and in
Table I.

Fitting the data in Fig. 7 with Equation 13, we can
determine the corresponding values of C1 and C3, which
are also shown in Fig. 7. The solid circles and open squares
are the calculated stress shift factors for axial extension

Figure 6 Master curve of the data in Fig. 4, for a reference stress of
30.97 MPa.

Figure 7 Relationships between the shift factor and stress.

creep and transverse contraction creep at different stress
levels, respectively, while the solid line represents the
equation fit.

It should be pointed out that the master curves in
Figs 5 and 6 indicate an accelerated creep characteri-
zation of approximate 4 decades beyond the test dura-
tion. In other words, to predict the creep behavior in a
one-year (7.5 decades) duration at room temperature and
30.97 MPa, we only need to perform several creep tests
at stresses of up to 59.4 MPa with one-hour (3.5 decades)
durations. However, it should also be noted that these con-
structed master curves are ‘virtual’ curves for long-term
prediction, because the actual one-year creep may be af-
fected by physical aging during the life of the creep, and
moreover, at relatively higher stress levels, creep damage

T AB L E I Values of log aσ obtained from the construction of the master curves in Figs 5 and 6

σ/MPa 30.97 35.86 41.08 48.54 50.85 55.49 59.40

log aσ

Longitudinal extension 0 −1.14749 −2.06806 −2.95909 −3.18782 −3.66789 −3.94765
Transverse contraction 0 −1.16376 −2.01157 −2.94544 −3.17968 −3.61602 −3.91843

Relative difference 0 1.418% −2.732% −0.461% −0.255% −1.414% −0.740%
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Figure 8 Poisson’s ratio vs. time.

in the form of shear bands and/or crazing may occur dur-
ing the creep. To get an accurate long-term prediction,
these two effects must be taken into account.

It can be seen from Fig. 7 and from Table I that the
relative difference between the shift factors for axial ex-
tension creep and the shift factors for transverse contrac-
tion creep is less than 3%. It can be concluded that the
stress shift factors for axial extension creep curves and
transverse contraction creep curves are identical for the
stress levels considered. To verify this result, we investi-
gated the Poisson’s ratio, which is defined as the ratio of
the negative lateral contraction strain, −εc(t, σ0)|trans, to
the axial extension strain, εc(t, σ0)|axial, during the creep
tests. The calculated results from simultaneous measure-
ments of axial extension strains and lateral contraction
strains are shown in Fig. 8. It is shown that the Poisson’s
ratio is time-independent and holds a constant value of
about 0.41. Let Jtr(t) denote the transverse contraction
creep compliance, and we will have

Jtr(t) = εc(t, σ0)|trans

σ0
=−µ

εc(t, σ0)|axial

σ0
= −µJ (t)

(15)

Therefore, in the nonlinear region, the transverse contrac-
tion creep compliance at σ , Jtr(t, σ ), can be expressed by
Jtr(t, σ ) = Jtr(t/aσ , σ0) with the same aσ as that for the
axial extension creep compliance.

5. Conclusion
This paper has investigated the change in the stress-
induced time scale for PC. The time-dependent axial elon-
gations and transverse contractions of the specimen were
simultaneously measured at nine different stress levels,
from 15.89 to 59.4 MPa, and modeled according to a time-
stress superposition principle. It is found that the creep
compliances above 26 MPa are stress-dependent and that
the material is nonlinear viscoelastic in nature. The mas-
ter curves with axial extension and transverse contraction

creeps with a one-year duration are constructed from the
one-hour tests, and the shift factors for axial extension
creep and transverse contraction creep are found to be
identical due to the time-independent Poisson’s ratio.
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20. J . C . D U P R É , “Traitement et analyse d’image pour la mesure de
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